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1. Introduction and Preliminaries
The analytical and numerical study of generalized Bessel functions has revealed

their interesting properties, which in some sense can be regarded as an extension of
the properties of Bessel functions to a two-dimensional domain. In this connection,
the relevance of generalized Bessel function and their multi-variable extension in
mathematical physics have been emphasized, since they provide analytical solutions
to partial differential equations such as the multi-dimensional diffusion equation,
the Schrödinger and Klein-Gordon equations. The algebraic structure underlying
generalized Bessel functions can be recognized in full analogy with Bessel functions,
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and may provide a unifying view to the theory of both Bessel and generalized Bessel
functions. Hence the interest for the generalized Bessel functions is justified.
1-variable Bessel functions:
1-variable Bessel functions Jn(x) [13, p.113, Th.(39)] are defined by the following
generating function:

exp

[
x

2

(
t− 1

t

)]
=

+∞∑
n=−∞

Jn(x) tn, t 6= 0. (1.1)

1-variable Modified Bessel functions:
1-variable Bessel functions In(x) [13, p.122, Q.No.(17)] are defined by the following
generating function:

exp

[
x

2

(
t+

1

t

)]
=

+∞∑
n=−∞

In(x) tn, t 6= 0. (1.2)

2-variable Bessel functions:
2-variable Bessel functions Jn(x, y) [6, p.332, Eq.(2.7)] see also [10, p.271, Eq.(1.1)]
are defined by the following generating function:

exp

[
x

2

(
t− 1

t

)]
exp

[
y

2

(
t2 − 1

t2

)]
=

+∞∑
n=−∞

Jn(x, y) tn. (1.3)

2-variable Hermite-Bessel functions:
Bessel functions HJn(x, y) [10, p.277, Eq.(4.4)] are defined by the following gener-
ating function:

exp

[
x

(
t− 1

t

)]
exp

[
y

2

(
t2 − 1

t2

)
− 1

4

(
t− 1

t

)2
]

=
+∞∑

n=−∞
HJn(x, y) tn. (1.4)

3-variable Hermite-Bessel functions associated with the Bell-type poly-
nomials:
3-variable Hermite-Bessel functions H(3,2)Jn(x,w, y) [7, p.405, Eq.(36)] are defined
by the following generating function:

exp

[
x

2

(
t− 1

t

)]
exp

[
w

4

(
t− 1

t

)2
]

exp

[
y

8

(
t− 1

t

)3
]

=
+∞∑

n=−∞
H(3,2)Jn(x,w, y) tn. (1.5)
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The explicit form of H(3,2)Jn(x,w, y) are given as:

H(3,2)Jn(x,w, y) =
∞∑
r=0

(−1)r H
(3,2)
n+2r(x,w, y)

r! (n+ r)! 2n+2r
,

where H
(3,2)
n (x,w, y) are defined by

H(3,2)
n (x,w, y) = n!

[n
3
]∑

r=0

yr H
(2)
n−3r(x,w)

r! (n− 3r)!
,

H(2)
n (x, y) =

[n
2
]∑

r=0

n! yrxn−2r

r! (n− 2r)!
= xn 2F0

 −n
2
, −n+1

2
;

y
(−2
x

)2
− ;

 = g2n(x, y),

which is known as Gould-Hopper polynomials [16, p.76, Eq.(6)].

Hn(x) =

[n
2
]∑

r=0

(−1)rn! (2x)n−2r

r! (n− 2r)!
= (2x)n 2F0

 −n
2
, −n+1

2
;
− 1
x2

− ;

 = g2n(2x,−1).

Pochhammer symbol:
In our investigations, we shall use the following standard notations:
N : = {1, 2, 3, · · · } ;N0 := N

⋃
{0} ;Z−0 := Z−

⋃
{0} = {0,−1,−2,−3, · · · } .

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real num-
bers, natural numbers, integers, positive and negative real numbers, respectively.
The Pochhammer symbol (α)p(α, p ∈ C) [13, p.22, Eq.(1), p.32, Q.N.(8) and
Q.N.(9)], see also [16, p.23, Eq.(22) and Eq.(23)] is defined by

(α)p :=
Γ(α + p)

Γ(α)
=



1 ;(p = 0;α ∈ C\{0}),
α(α + 1) · · · (α + n− 1) ;(p = n ∈ N;α ∈ C),
(−1)nk!
(k−n)! ;(α = −k; p = n;n, k ∈ N0; 0 ≤ n ≤ k),

0 ;(α = −k; p = n;n, k ∈ N0;n > k),
(−1)n
(1−α)n

;(p = −n;n ∈ N;α ∈ C\Z).

It being understood conventionally that (0)0 = 1 and assumed tacitly that the
Gamma quotient exists.
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Multiple hypergeometric functions of Kampé de Fériet:

For (aA) = a1, a2.., aA and
(
b
(i)

B(i)

)
= b

(i)
1 , b

(i)
2 , b

(i)
3 , ..., b

(i)

B(i) , we consider the multiple

hypergeometric series [14]

FA: B(1);··· ;B(n)

C: D(1);··· ;D(n)


(aA) :

(
b
(1)

B(1)

)
; · · · ;

(
b
(n)

B(n)

)
;

x1, ..., xn

(cC) :
(
d
(1)

D(1)

)
; · · · ;

(
d
(n)

D(n)

)
;



=
∞∑

m1,m2,...,mn=0

A∏
j=1

(aj)m1+m2+···+mn

B(1)∏
j=1

(
b
(1)
j

)
m1

· · ·
B(n)∏
j=1

(
b
(n)
j

)
mn

C∏
j=1

(cj)m1+m2+···+mn

D(1)∏
j=1

(
d
(1)
j

)
m1

· · ·
D(n)∏
j=1

(
d
(n)
j

)
mn

n∏
i=1

xmi
i

mi!
, (1.6)

which unifies and extends the four Lauricella series F
(n)
A , F

(n)
B , F

(n)
C and F

(n)
D in

n variables. Infact, as already observed in literature ([9], [12] and see also [15,
pp.37-38]), the multiple hypergeometric series (1.6), is a special case of the gen-
eralized Lauricella series in several variables, which was introduced by Srivastava
and Daoust in 1969.
Suppose

∆k ≡ 1 + C +D(k) − A−B(k) (k = 1, ..., n).

For the convergence [18, p.1127, Eq.(4.3)-Eq.(4.5)] of the multiple hypergeometric
series (1.6), we have

(i)∆k > 0; |x1| <∞, |x2| <∞ , ..., |xn| <∞, (1.7)

(ii)∆k = 0; A > C and |x1|
1

(A−C) + · · ·+ |xn|
1

(A−C) < 1, (1.8)

(iii)∆k = 0; A ≤ C and max{|x1|, ..., |xn|} < 1. (1.9)

In order to get the clear idea about the absolutely and conditionally convergence
of multiple series (1.6), see [8, pp.113-114, Th.(4)-Th.(6)].
Decomposition of bilateral series:

+∞∑
n=−∞

Φ(n) =
+∞∑

n=−∞

Φ(2n) +
+∞∑

n=−∞

Φ(2n+ 1), (1.10)



Certain Generating Relations ... 143

provided that both sides are absolutely convergent.
Combinatorial identity:

1

p!
(λ)p =

(
λ+ p− 1

p

)
. (1.11)

Motivated by the work done by Agarwal et al. [1, 2], Chen et al. [4], Korsch et
al. [11] and Srivastava et al. [17]. The present article is organized as follows: In
section 2, we obtain eight generating relations following with proof by using , one,
two and three variable Bessel functions and multiple hypergeometric functions of
Kampé de Fériet. In section 3 we discuss some special cases.

2. Laurent and Maclaurin Types Hypergeometric Generating Relations
When t 6= 0, then following results hold true.

(i)

cosh

[
x

2

(√
t− 1√

t

)]
exp

[
y

2

(
t− 1

t

)]
=

+∞∑
n=−∞

J2n(x, y) tn. (2.1)

(ii)

sinh

[
x

2

(√
t− 1√

t

)]
exp

[
y

2

(
t− 1

t

)]
=
√
t

+∞∑
n=−∞

J2n+1(x, y) tn. (2.2)

(iii)

cosh

[
x

(√
t− 1√

t

)]
exp

[
y

2

(
t− 1

t

)
− 1

4

(√
t− 1√

t

)2
]

=
+∞∑

n=−∞
HJ2n(x, y) tn.

(2.3)
(iv)

sinh

[
x

(√
t− 1√

t

)]
exp

[
y

2

(
t− 1

t

)
− 1

4

(√
t− 1√

t

)2
]

=
√
t

+∞∑
n=−∞

HJ2n+1(x, y)tn.

(2.4)
(v)

cosh

[
x

2

(√
t− 1√

t

)
+
y

8

(√
t− 1√

t

)3
]

exp

[
w

4

(√
t− 1√

t

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y) tn. (2.5)
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(vi)

sinh

[
x

2

(√
t− 1√

t

)
+
y

8

(√
t− 1√

t

)3
]

exp

[
w

4

(√
t− 1√

t

)2
]

=
√
t

+∞∑
n=−∞

H(3,2)J2n+1(x,w, y) tn. (2.6)

(vii)

(1−t)−λF 1+A:D(1);··· ;D(n)

B:E(1);··· ;E(n)


λ, (aA) :

(
d
(1)

D(1)

)
;
(
d
(2)

D(2)

)
; · · · ;

(
d
(n)

D(n)

)
;

x1
1−t ,

x2
1−t , · · · ,

xn
1−t

(bB) :
(
e
(1)

E(1)

)
;
(
e
(2)

E(2)

)
; · · · ;

(
e
(n)

E(n)

)
;



=
∞∑
p=0

(
λ+ p− 1

p

)
×

×F 1+A:D(1);··· ;D(n)

B:E(1);··· ;E(n)


λ+ p, (aA) :

(
d
(1)

D(1)

)
;
(
d
(2)

D(2)

)
; · · · ;

(
d
(n)

D(n)

)
;

x1, x2, · · · , xn
(bB) :

(
e
(1)

E(1)

)
;
(
e
(2)

E(2)

)
; · · · ;

(
e
(n)

E(n)

)
;

 tp.
(2.7)

(viii)

(1−t)−λFA:1+D
(1);··· ;D(n)

B:E(1);··· ;E(n)


(aA) : λ,

(
d
(1)

D(1)

)
;
(
d
(2)

D(2)

)
; · · · ;

(
d
(n)

D(n)

)
;

x1
1−t ,

x2
1−t , · · · ,

xn
1−t

(bB) :
(
e
(1)

E(1)

)
;
(
e
(2)

E(2)

)
; · · · ;

(
e
(n)

E(n)

)
;



=
∞∑
p=0

(
λ+ p− 1

p

)
×

×FA:1+D
(1);··· ;D(n)

B:E(1);··· ;E(n)


(aA) : λ+ p,

(
d
(1)

D(1)

)
;
(
d
(2)

D(2)

)
; · · · ;

(
d
(n)

D(n)

)
;

x1,
x2
1−t , · · · ,

xn
1−t

(bB) :
(
e
(1)

E(1)

)
;
(
e
(2)

E(2)

)
; · · · ;

(
e
(n)

E(n)

)
;

 tp,
(2.8)

provided that both sides of each equation are convergent.
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Proof of relation (2.5)
From equations (1.5) and (1.10), we have

exp

[
x

2

(
t− 1

t

)
+
y

8

(
t− 1

t

)3
]

exp

[
w

4

(
t− 1

t

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y)t2n +

+∞∑
n=−∞

H(3,2)J2n+1(x,w, y)t2n+1. (2.9)

Put t = i
√
T , t2 = −T in equation (2.9), we get

exp

[
x

2

(
i
√
T +

i√
T

)
+
y

8

(
i
√
T +

i√
T

)3
]

exp

[
w

4

(
i
√
T +

i√
T

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y)(−T )n + i

√
T

+∞∑
n=−∞

H(3,2)J2n+1(x,w, y)(−T )n,

exp

[
i

{
x

2

(√
T +

1√
T

)
− y

8

(√
T +

1√
T

)3
}]

exp

[
−w

4

(√
T +

1√
T

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y)(−T )n + i

√
T

+∞∑
n=−∞

H(3,2)J2n+1(x,w, y)(−T )n,

{
cos

[
x

2

(√
T +

1√
T

)
− y

8

(√
T +

1√
T

)3
]

+

+i sin

[
x

2

(√
T +

1√
T

)
− y

8

(√
T +

1√
T

)3
]}

exp

[
−w

4

(√
T +

1√
T

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y)(−T )n + i

√
T

+∞∑
n=−∞

H(3,2)J2n+1(x,w, y)(−T )n. (2.10)

Now equating real and imaginary parts of equation (2.10), we get real part as

cos

[
x

2

(√
T +

1√
T

)
− y

8

(√
T +

1√
T

)3
]

exp

[
−w

4

(√
T +

1√
T

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y)(−T )n. (2.11)



146 South East Asian J. of Mathematics and Mathematical Sciences

Put T = −t or −T = t,
√
T = i

√
t in equation (2.11), we get

cos

[
x

2

(
i
√
t− i√

t

)
− y

8

(
i
√
t− i√

t

)3
]

exp

[
−w

4

(
i
√
t− i√

t

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y)tn,

cos i

[
x

2

(√
t− 1√

t

)
+
y

8

(√
t− 1√

t

)3
]

exp

[
w

4

(√
t− 1√

t

)2
]

=
+∞∑

n=−∞
H(3,2)J2n(x,w, y)tn.

After further simplification, we get the relation (2.5).
Proof of relation (2.7)

Let

Υ = (1− t)−λ×

× F 1+A:D(1);··· ;D(n)

B:E(1);··· ;E(n)


λ, (aA) :

(
d
(1)

D(1)

)
;
(
d
(2)

D(2)

)
; · · · ;

(
d
(n)

D(n)

)
;

x1
1−t ,

x2
1−t , · · · ,

xn
1−t

(bB) :
(
e
(1)

E(1)

)
;
(
e
(2)

E(2)

)
; · · · ;

(
e
(n)

E(n)

)
;



= (1− t)−λ×

×
∞∑

m1,m2,...,mn=0

(λ)m1+m2+···+mn(a1)m1+m2+···+mn(a2)m1+m2+···+mn · · · (aA)m1+m2+···+mn

(b1)m1+m2+···+mn(b2)m1+m2+···+mn · · · (bB)m1+m2+···+mn

×

×

(
d
(1)
1

)
m1

(
d
(1)
2

)
m1

· · ·
(
d
(1)

D(1)

)
m1

(
d
(2)
1

)
m2

(
d
(2)
2

)
m2

· · ·
(
d
(2)

D(2)

)
m2

· · ·(
e
(1)
1

)
m1

(
e
(1)
2

)
m1

· · ·
(
e
(1)

E(1)

)
m1

(
e
(2)
1

)
m2

(
e
(2)
2

)
m2

· · ·
(
e
(2)

E(2)

)
m2

· · ·
×

×
· · ·
(
d
(n)
1

)
mn

(
d
(n)
2

)
mn

· · ·
(
d
(n)

D(n)

)
mn

(x1)
m1(x2)

m2 · · · (xn)mn

· · ·
(
e
(n)
1

)
mn

(
e
(n)
2

)
mn

· · ·
(
e
(n)

E(n)

)
mn

(1− t)m1m1!(1− t)m2m2! · · · (1− t)mn mn!

=
∞∑

m1,m2,...,mn=0

(λ)m1+m2+···+mn
(a1)m1+m2+···+mn

(a2)m1+m2+···+mn
· · · (aA)m1+m2+···+mn

(b1)m1+m2+···+mn(b2)m1+m2+···+mn · · · (bB)m1+m2+···+mn

×
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×

(
d
(1)
1

)
m1

(
d
(1)
2

)
m1

· · ·
(
d
(1)

D(1)

)
m1

(
d
(2)
1

)
m2

(
d
(2)
2

)
m2

· · ·
(
d
(2)

D(2)

)
m2

· · ·(
e
(1)
1

)
m1

(
e
(1)
2

)
m1

· · ·
(
e
(1)

E(1)

)
m1

(
e
(2)
1

)
m2

(
e
(2)
2

)
m2

· · ·
(
e
(2)

E(2)

)
m2

· · ·
×

×
· · ·
(
d
(n)
1

)
mn

(
d
(n)
2

)
mn

· · ·
(
d
(n)

D(n)

)
mn

(x1)
m1(x2)

m2 · · · (xn)mn

· · ·
(
e
(n)
1

)
mn

(
e
(n)
2

)
mn

· · ·
(
e
(n)

E(n)

)
mn

m1!m2! · · ·mn!
×

× 1F0

 λ+m1 +m2 + · · ·+mn;
t

− ;


=

∞∑
m1,m2,...,mn=0

(λ)m1+m2+···+mn(a1)m1+m2+···+mn(a2)m1+m2+···+mn · · · (aA)m1+m2+···+mn

(b1)m1+m2+···+mn(b2)m1+m2+···+mn · · · (bB)m1+m2+···+mn

×

×

(
d
(1)
1

)
m1

(
d
(1)
2

)
m1

· · ·
(
d
(1)

D(1)

)
m1

(
d
(2)
1

)
m2

(
d
(2)
2

)
m2

· · ·
(
d
(2)

D(2)

)
m2

· · ·(
e
(1)
1

)
m1

(
e
(1)
2

)
m1

· · ·
(
e
(1)

E(1)

)
m1

(
e
(2)
1

)
m2

(
e
(2)
2

)
m2

· · ·
(
e
(2)

E(2)

)
m2

· · ·
×

×
· · ·

(
d
(n)
1

)
mn

(
d
(n)
2

)
mn

· · ·
(
d
(n)

D(n)

)
mn

(x1)
m1(x2)

m2 · · · (xn)mn

· · ·
(
e
(n)
1

)
mn

(
e
(n)
2

)
mn

· · ·
(
e
(n)

E(n)

)
mn

m1! m2! · · · mn!

∞∑
p=0

(λ)p+m1+m2+···+mn

(λ)m1+m2+···+mn
p!
tp.

Using the equation (1.11), we get

Υ =
∞∑
p=0

(
λ+ p− 1

p

)
×

×
∞∑

m1,m2,...,mn=0

(λ+ p)m1+m1+···+mn(a1)m1+m2+···+mn(a2)m1+m2+···+mn · · · (aA)m1+m2+···+mn

(b1)m1+m2+···+mn(b2)m1+m2+...+mn · · · (bB)m1+m2+···+mn

×

×

(
d
(1)
1

)
m1

(
d
(1)
2

)
m1

· · ·
(
d
(1)

D(1)

)
m1

(
d
(2)
1

)
m2

(
d
(2)
2

)
m2

· · ·
(
d
(2)

D(2)

)
m2

· · ·(
e
(1)
1

)
m1

(
e
(1)
2

)
m1

· · ·
(
e
(1)

E(1)

)
m1

(
e
(2)
1

)
m2

(
e
(2)
2

)
m2

· · ·
(
e
(2)

E(2)

)
m2

· · ·
×

×
· · ·

(
d
(n)
1

)
mn

(
d
(n)
2

)
mn

· · ·
(
d
(n)

D(n)

)
mn

(x1)
m1(x2)

m2 · · · (xn)mn

· · ·
(
e
(n)
1

)
mn

(
e
(n)
2

)
mn

· · ·
(
e
(n)

E(n)

)
mn

m1! m2! · · · mn!
tp. (2.12)
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Hence, representing the equation (2.12), in hypergeometric form we get the relation
(2.7).
Similarly, we get the remaining generating relations (2.1)-(2.4) and (2.8) in the
same way as the proof of generating relations (2.5), (2.6) and (2.7).

3. Special Cases

In seventh generating relation (2.7), put A = B = 0, D(1) = D(2) = D(3) =

· · · = D(n) = 1, E(1) = E(2) = E(3) = · · · = E(n) = 1 and d
(1)
1 ≡ d1, d

(2)
1 ≡

d2, d
(3)
1 ≡ d3, ..., d

(n)
1 ≡ dn, e

(1)
1 ≡ e1, e

(2)
1 ≡ e2, e

(3)
1 ≡ e3, ..., e

(n)
1 ≡ en, we get a

generating relation

(1− t)−λF (n)
A

[
λ; d1, d2, d3, ..., dn; e1, e2, e3, ..., en; x1

1−t ,
x2
1−t ,

x3
1−t , · · · ,

xn
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F

(n)
A

[
λ+ p; d1, d2, d3, .., dn; e1, e2, e3, ..., en;x1, x2, x3, ..., xn

]
tp,

(3.1)

where |t| < 1, | x1
1−t | + |

x2
1−t | + · · · + |

xn
1−t | < 1 and F

(n)
A is Lauricella function of n

variables [16, p.60, Eq.(1)].
When x3 = x4 = · · · = xn = 0 in equation (3.1), and applying the definition of
Appell’s function F2 of second kind [3] see also [16, p.53, Eq.(5)], we get a known
result [5, p.28, Eq.(2.2)]

(1− t)−λF2

[
λ ; d1, d2; e1, e2;

x1
1−t ,

x2
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F2

[
λ+ p; d1, d2 ; e1, e2 ; x1, x2

]
tp, (3.2)

where |t| < 1, | x1
1−t |+ |

x2
1−t | < 1.

In eighth generating relation (2.8), put A = 0, B = 1, D(1) = 1, D(2) = D(3) =

· · · = D(n) = 2, E(1) = E(2) = E(3) = · · · = E(n) = 0 and d
(1)
1 ≡ d, d

(2)
1 ≡ g2, d

(3)
1 ≡

g3, ..., d
(n)
1 ≡ gn, d

(2)
2 ≡ h2, d

(3)
2 ≡ h3, ..., d

(n)
2 ≡ hn, b1 ≡ b, we get a generating

relation

(1− t)−λ F (n)
B

[
λ, g2, g3, ..., gn; d, h2, h3, ..., hn; b ; x1

1−t ,
x2
1−t ,

x3
1−t , · · · ,

xn
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F

(n)
B

[
λ+ p, g2, g3, ..., gn; d, h2, h3, ..., hn; b;x1,

x2
1−t ,

x3
1−t , · · · ,

xn
1−t

]
tp,

(3.3)
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where |t| < 1, max
{
| x1
1−t |, |

x2
1−t |, · · · , |

xn
1−t |
}
< 1 and F

(n)
B is Lauricella function of n

variables [16, p.60, Eq.(2)].
When x3 = x4 = · · · = xn = 0 in equation (3.3), and applying the definition of
Appell’s function F3 of third kind [3] see also [16, p.53, Eq.(6)], we get a known
result [5, p.29, Eq.(2.3)]

(1− t)−λ F3

[
λ, g2, d, h2 ; b ; x1

1−t ,
x2
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F3

[
λ+ p, g2, d, h2 ; b ; x1,

x2
1−t

]
tp, (3.4)

where |t| < 1, max
{
| x1
1−t |, |

x2
1−t |
}
< 1.

In seventh generating relation (2.7), put A = 1, B = D(1) = D(2) = D(3) = · · · =
D(n) = 0, E(1) = E(2) = E(3) = · · · = E(n) = 1 and e

(1)
1 ≡ e1, e

(2)
1 ≡ e2, ..., e

(n)
1 ≡

en, a1 ≡ a, we get a generating relation

(1− t)−λF (n)
C

[
λ, a; e1, e2, e3, ..., en; x1

1−t ,
x2
1−t ,

x3
1−t , · · · ,

xn
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F

(n)
C

[
λ+ p, a; e1, e2, e3, ..., en;x1, x2, x3, ..., xn

]
tp, (3.5)

where |t| < 1,
√
| x1
1−t | +

√
| x2
1−t | + · · · +

√
| xn
1−t | < 1 and F

(n)
C is Lauricella function

of n variables [16, p.60, Eq.(3)].
When x3 = x4 = · · · = xn = 0 in equation (3.5), and applying the definition of
Appell’s function F4 of fourth kind [3] see also [16, p.53, Eq.(7)], we get a known
result [5, p.29, Eq.(2.4)]

(1− t)−λ F4

[
λ, a ; e1, e2;

x1
1−t ,

x2
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F4

[
λ+ p, a ; e1, e2; x1, x2

]
tp, (3.6)

where |t| < 1,
√
| x1
1−t |+

√
| x2
1−t | < 1.

In seventh generating relation (2.7), put A = 0, B = 1, D(1) = D(2) = D(3) =

· · · = D(n) = 1, E(1) = E(2) = E(3) = · · · = E(n) = 0 and b1 ≡ b, d
(1)
1 ≡ d1,

d
(2)
1 ≡ d2, ..., d

(n)
1 ≡ dn, we get a generating relation

(1− t)−λF (n)
D

[
λ; d1, d2, d3, ..., dn; b; x1

1−t ,
x2
1−t ,

x3
1−t , ...,

xn
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F

(n)
D

[
λ+ p; d1, d2, d3, ..., dn; b;x1 x2, x3, ..., xn

]
tp, (3.7)
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where |t| < 1, max
{
| x1
1−t |, |

x2
1−t |, · · · , |

xn
1−t |
}
< 1 and F

(n)
D is Lauricella function of n

variables [16, p.60, Eq.(4)].
When x3 = x4 = · · · = xn = 0 in equation (3.7), and applying the definition
of Appell’s function F1 of first kind [3] see also [16, p.53, Eq.(4)], we get a known
result [5, p.28, Eq.(2.1)]

(1− t)−λF1

[
λ; d1, d2 ; b ; x1

1−t ,
x2
1−t

]
=
∞∑
p=0

(
λ+ p− 1

p

)
F1

[
λ+ p; d1, d2 ; b ;x1, x2

]
tp, (3.8)

where |t| < 1, max
{
| x1
1−t |, |

x2
1−t |
}
< 1.

4. Conclusion
We conclude the present investigation by noting that the family of Bessel func-

tions is introduced in standard form. The results derived in this paper are quite
significant and general in character. Moreover, we derive some generating relations,
involving multiple hypergeometric functions of Kampé de Fériet with some special
cases. We remark that the results obtained in current paper are expected to lead
some potential applications in several diverse fields of mathematical, physical, sta-
tistical and engineering sciences.
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